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Abstract. The task of automatic image annotation attempts to predict
a set of semantic labels for an image. Majority of the existing meth-
ods discover a common latent space that combines content and semantic
image similarity using the metric learning kind of global learning frame-
work. This limits their applicability to large datasets. On the other hand,
there are few methods which entirely focus on learning a local latent
space for every test image. However, they completely ignore the global
structure of the data. In this work, we propose a novel image annota-
tion method which attempts to combine best of both local and global
learning methods. We introduce the notion of neighborhood-types based
on the hypothesis that similar images in content/feature space should
also have overlapping neighborhoods. We also use graph diffusion as a
mechanism for label transfer. Experiments on publicly available datasets
show promising performance.

1 Introduction

Automatic image annotation is a multi-label prediction problem that attempts
to predict a set of semantic labels based on visual content of a given image [39].
It has potential application in image retrieval [18], caption generation [10], image
description and classification [29].

The basic assumption in image annotation is that the visual content of an
image captures a wide variety of semantics at different levels of granularity.
Additionally, the label co-occurrence patterns also model the semantic similar-
ity between images. Therefore, existing methods have tried to model label-to-
label [18], image-to-image [9] and image-to-label [4] similarities or a combination
of them [17,30].

In context of image-to-image and image-to-label similarities Nearest Neigh-
bor (NN) based approaches have been largely successful and intuitive for im-
age annotation. Recent methods either employ a global (metric) learning tech-
nique [9,28] or a local query specific model [14] for addressing the class-imbalance
problem. However, while the former suffers from the problem of scalability due
to global metric learning bottleneck, the latter fails to capture the global latent
structure of the data as it is too focused on query specific neighborhood struc-
ture. An alternate approach in [22] addresses the class-imbalance by performing



scale-dependent label diffusion on global hypergraph in a transductive setup.
However, their method also suffers from the scalability issue (due to SVD de-
composition of large dense matrices). Many recent deep learning methods also
propose to learn end-to-end network for solving image annotation task [21,32,37].

In this paper, we focus on bridging the gap between purely global and local
modeling of the image annotation task. The key hypothesis is that similar im-
ages in feature space also have similar labels, hence two vicinal images in feature
space should also have overlapping neighborhoods. Each of these neighborhoods
(corresponding to an image) can be statistically characterized by constructing
the label histogram of all their associated images. We refer to these label his-
togram features as Local Label Distribution (LLD) features. Thus, two similar
images should have similar LLD feature representation which represent similar-
ity in neighborhood. Hence we propose to learn a local label-transfer model for
each such neighborhood-type (cluster) separately. This characterization of im-
ages by neighborhood-types also inherently captures the global latent structure
of data.

Subsequently, each local model is formulated as Multiple Kernel Learning
(MKL) task, using a family of multi-scale diffusion kernels. The MKL formula-
tion minimizes the sum of squared error between the ground truth labels (known
for each training image) and the labels predicted with multi-scale diffusion over
the associated local graph. Such diffusion is performed by linearly combining a
set of scale dependent diffusion kernels. A closed form solution exists for ob-
taining the optimal kernel combination coefficients (parameters of local model).
Thus, MKL parameters per neighborhood-type are learnt over the training data.
At test time, we construct and map the neighborhood structure of each query
image to an existing neighborhood-type to retrieve the best parameter of local
model. Finally, we construct the local graph for this query image and diffuse the
label using these parameters for subsequent prediction.

1.1 Our Contributions

• We propose a new label histogram characterization (LLD features) of the
image neighborhood enabling us to discover the neighborhood-types in the
dataset.

• We propose a MKL formulation as local learning model and derived a closed
form solution for obtaining the model parameters.

• We propose a diffusion scale normalization procedure for effectively combin-
ing diffusion over multiple graphs.

2 Literature Survey

2.1 Generative, Discriminative and Hybrid Models

Xinag et al. [34] proposed a Markov Random Field model, which captured many
previously proposed generative models, but had an expensive training step as it
learnt an MRF per label.



Fig. 1. Pipeline showing flow of testing & training phase
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Discriminative models were proposed in [7, 8, 27, 35]. These methods learn
label-specific models to classify an image belonging to the particular label. How-
ever they fail to capture label-to-label correlations. A hybrid model was presented
in [20] combining a generative [6] and discriminative (SVM) model aimed at im-
proving the number of labels recalled.

2.2 Nearest Neighbor Approaches

Though simple and highly intuitive, NN methods are among the best performing
ones. [9] introduced metric learning to fuse an array of low-level features. They
used cross entropy loss in addition to weighted (based on distance or rank) label
propagation. Recently, [28] defined a Bayesian approach with two pass kNN for
addressing the class-imbalance challenge and subsequently used an extension of
existing LMNN approach [33] as metric learning to fuse different feature sets.
One major limitation of these approaches is that they are global methods and
heavily rely on metric learning construct, which makes it difficult to scale them
to large datasets.

Alternatively, a local variant of NN method proposed in [14] performs the
Non-negative Matrix Factorization (NMF [15]) of features from images in a
smaller neighborhood, which are made to follow a consensus constraint. Here,
the class-imbalance is dealt by means of weighting different feature matrices.
However, this is purely a local approach and hence fails to capture the global
structure of the latent space.

Recently, [25] and [28] report performance improvement over the NN methods
by using cross modal embedding such as Canonical Correlation Analysis (CCA)
or Kernel Canonical Correlation Analysis (KCCA). This is again an attempt to
learn global common latent space. However selection of an appropriate kernel



function and scalability of KCCA poses a major challenge in these methods.

2.3 Graph Based Models

A graph based transductive method for explicitly capturing label-to-label and
image-to-image similarities was proposed in [30]. Recently, [22] proposed a hy-
pergraph diffusion based transductive method and exploited multi-scale diffusion
to address the class-imbalance problem. However, both these methods are semi-
supervised in the sense that they need access to all test data for prediction.
Additionally the hypergraph diffusion method is not scalable due to require-
ment of storage and computation of eigen-decomposition of very large matrices.

2.4 Deep Learning Based Methods

Inspired by the recent success of deep neural net architectures in image classifi-
cation [23,24], different approaches involving deep nets have been tried for multi-
label classification [11,13,19,32]. [11] modeled these relationship on a hierarchi-
cal model exploiting Long Short Term Memory (LSTM) by incorporating inter-
level and intra-level label correlations which were parsed using WordNet. CNN-
RNN [32] learns a joint image-to-label embedding and label co-occurrence model
in an end-to-end way. Semantically Regularised CNN-RNN (S-CNN-RNN) [37]
improves on the CNN-RNN model by using a semantically regularized embedding
layer as an interface between the CNN and RNN which enables RNN to capture
the relational model alone. [13] proposed exploiting image metadata to generate
neighbors of an image and blend visual information using neural-nets. Recent
works in Deep nets capture label-to-label relationships more explicitly than be-
fore. Another recent work in [21] converted labels to a word2vec vector [19] and
performed label transfer using nearest neighbor methods in embedding space
computed using CCA or KCCA.

Recently deep-learning methods have been introduced in the context of graphs
[31, 38, 40, 42]. Gated Graph Neural Network (GGNN) [40] is a LSTM variant
for graphs which learns a propagation model that transfers information between
nodes depending on the edge types. [41] introduced Graph Search Neural Net-
work (GSNN) which improves GGNN [40] by diminishing the computational
issues. GSNN is able to reason about the concepts by capturing the information
flow between nodes in the noisy knowledge-graphs. GSNN is different from our
model in the propagation modeling in graphs. We explicit model the label propa-
gation with diffusion framework on graphs constructed from neighboring images
while GSNN learns the network propagation parameters in the knowledge-graph.

3 Proposed Approach

This section will provide a detailed description of each individual module in the
proposed train and test phase flow pipeline depicted in Figure 1. Let Xtr =



{x1, · · · ,xn} be the feature-vector representation of training set of images with
corresponding known ground truth labels Ztr = {z1, · · · , zn}, where each zi is a
binary vector of size l denoting presence/absence of labels in the image xi ∈ Xtr.

3.1 Nearest Neighbors Search

This module performs feature space NN search for a given image in order to
discover a group of similar images. Instead of performing a global search, we
opt for quantizing the feature space image representation by employing the par-
alleizable k-means clustering algorithm 1 on training data and finding a fixed
g number of clusters in an offline manner. From all these clusters, we subse-
quently find the top η closest cluster centers in feature space, then we perform
the local NN search in those clusters by retrieving a fixed δ number of similar
images from each of them. All such retrieved images form the neighbourhood of
a given image. We denote this set of nearest neighbor images obtained with this
method for a given image x as N (x). Note that |N (x)| ≤ ηδ, as a cluster can
have less than δ images. This naturally provides diversity and scalability over
the exhaustive NN search.

3.2 Local Graph Construction

This module constructs an undirected weighted graph G(V,E,W) for an image
x using the neighborhood N (x), where the input image and each of the selected
images in N (x) images become nodes of the graph.

We construct a local graph by connecting each node to its k most similar
nodes using an inverse euclidean distance similarity function over the corre-
sponding image features. We use the standard Gaussian kernel over the feature
space as the similarity function, i.e., Sim(x1, x2) = exp(−||x1, x2||l2/σ2) to as-
sign weights to these edges.

Note that here |V | = ζ + 1 ≤ ηδ + 1 where |N (x)| = ζ

3.3 LLD Feature Construction, Clustering and Mapping

This module first constructs an l-dimensional histogram feature F(x) for each
image representing the LLD of a given image x, by taking the sum of ground
truth labels of all the samples in N (x):

F(x) =
∑

∀xi∈N (x)

zi. (1)

We employ parallelizable k-means clustering algorithm over the LLD features
corresponding to all training images to get a fixed number of cluster-centers
(c) which act as representatives of the neighborhood-types. To map an image
to a neighborhood-type we just need to compute its closest neighborhood-type
(cluster-centers) in this l-dimensional space. As discussed in Section 1, we dis-
cover the clusters in LLD space and learn a local model per cluster.

1 https://github.com/serban/kmeans



3.4 Diffusion Kernel

In this module we construct a family of diffusion kernels at different diffusion
scales for a given local graph computed in the previous module. In each weighted
graph G(V,E,W), training images with labels acts as heat sources that are
diffused/propagated to all the other nodes in the graph where we aggregate the
information and subsequently use for prediction.

Graph Laplacian. For (dyadic) undirected weighted graphs, diffusion kernels
are derived from the spectra (constituted by both eigenvalues & eigenvectors)
of the graph Laplacian matrix [1]. The unnormalized Laplacian L of a weighted
undirected graph G with adjacency matrix A is defined as:

L = D −A = UΛUT (2)

where D is the diagonal matrix with each diagonal entry dii =
n∑
i=1

Aij , U is

the matrix of eigenvectors and Λ is the diagonal matrix of corresponding real
positive eigenvalues of the Laplacian matrix, i.e. Λ = Diag(λ1, · · · , λζ+1) and
0 = λ1 ≤ λ2 · · · ≤ λζ+1 for a connected graph.

Diffusion kernel is a positive semi-definite, non-linear family of kernels and
can be used for defining distances over non-euclidean spaces and for multiscale-
multilabel-diffusion in graphs. It has been used for multi-scale label diffusion
over graphs [36], and a variety of other applications 3D Shape Matching [3] and
Robotics graphSLAM [2]

Subsequently, the scale dependent diffusion kernel matrix is defined as:

H(t) = Ue−ΛtUT (3)

where t > 0 is the parameter of the diffusion. Every entry H(i, j, t) of the
diffusion kernel can be interpreted as the amount of heat diffused from node
vj to node vi at scale t while considering vj as a point heat source of unit
magnitude. We use the diffusion kernel matrix at m different scales to diffuse
each label.

This is different from [22] as we use multiple scales for all labels rather than
using specific scales for different frequency type of labels.

Diffusion Scale Normalization. Instead of manually choosing diffusion scales
for all local graphs, we propose to find a set of normalized scales per graph us-
ing the structure of the local graph. This structure is captured by the spectrum
(eigenvalues) of the graph. Such a normalization is very important as the diffu-
sion scale value is relative to the graph structure/topology. Interestingly, if we
see the plot of exponential function

f(λ, t) = e−λt = θ (4)



in Figure 2, we see that one can find the normalized values of the diffusion scale
parameter t (varying from smaller to larger values) by fixing the values of θ and
index of λ.

t = −log(θ)/λ (5)
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Fig. 2. Diffusion scale normalization on a sample graph of 56 nodes. In this case we
use the 12th (= 0.2 ∗ |56|) eigenvalue and θ = 0.26 for computing the scale normalized
t value. In general a set of θ values will be chosen for defining bank of diffusion kernels

3.5 MKL Formulation for Label Diffusion

In this section, we outline our MKL formulation for learning the label diffusion
parameters locally for each LLD cluster/neighborhood type.

Let Xtr
c ⊂ Xtr be the subset of nc training images and Ztrc ⊂ Ztr be the

ground truth labels in c-th LLD cluster. We can write Xtr
c = [x1, · · · ,xnc

] and
Ztrc = [z1, · · · , znc ].

For each image xk ∈ Xc
tr there is a local graph Gk (Section 3.2) with ζk + 1

nodes where the node with the last index is xk itself. Let zk be the ground truth
label of xk and Yk = [y1 · · ·yl] be the transpose matrix of ground truth labels
(i.e., [z1 · · · zk]T ) for all the other ζk images (nodes) in the local graph appended
with a 0 row vector representing labels for xk itself. Note that yi is a column
vector of dimension (ζk + 1)× 1. The last row is appended for compatibility in
matrix multiplication.

Let τ = [t1, · · · , tm]T be the set of m normalized diffusion scale parameters
used for defining the diffusion kernels: Hk(t1), · · · , Hk(tm) (Section 3.4). Here
each Hk(ti) is a (ζk + 1)× (ζk + 1) dimensional matrix. Let e = [0, · · · , 0, 1] be
a (ζk + 1)× 1 dimensional vector, then hik = eTHk(ti) represents the last row of
the (symmetric) diffusion kernel matrix.

It is important to note that since the training image xk is kept at the last
position in the index order in graph Gk, only the last row of Hk(ti) (i.e., hik) is
sufficient to perform label diffusion (at scale ti) from all other images (nodes) in
the graph.



Since we know the ground truth labels for image xk, and if we take βcj to rep-

resent the diffusion contributions of the diffusion kernels hik∀i ∈ {1, · · · ,m} for
jth label in the cth cluster, we can obtain an MKL formulation as a minimization
criterion:

min
βc

nc∑
k=1

||Γkβc − zk||2, (6)

where,

βjc = [βj1c , β
j2
c , ..β

jm
c ](1×m) (7)

βc = [β1
c , β

2
c , ..β

l
c]
T
(lm×1) (8)

Γk =



(Mky1)T

. . .

(Mkyr)
T

. . .

(Mkyl)
T


(l×lm)

(9)

and

Mk = [h1
k
T
, h2
k
T
, . . . , hmk

T ]T(m×(ζk+1)). (10)

By combining Eq. 6, 8, 9 with simple algebraic manipulations, we can write
the simplified MKL formulation as:

min
βc

||Γ̂cβc −Zc||2, (11)

where,

Γ̂c = [ΓT1 , · · · ,ΓTnc
]T (12)

is a (ncl × lm) matrix and

Zc = [zT1 , · · · , zTnc
]T (13)

is a (ncl × 1) vector.

The minimization of proposed MKL formulation Eq. 11 can be achieved by
finding the optimal value of parameter βc in a closed form manner as:

βc = (Γ̂Tc Γ̂c + εI)−1Γ̂Tc Zc, (14)

It is important to note that the Γ̂c is a very sparse and low rank matrix. This
sparse structure can be useful in efficiently computing its singular value decom-
position and hence the pseudoinverse of the Γ̂c which is relatively inexpensive
as KCCA or hypergraph Laplacian eigenvector-decomposition.

Since our method solves MKL at cluster level in a closed form manner, it is
scalable to large data.



3.6 Label Diffusion & Prediction

For a test image xq, F(xq) is used to find s nearest LLD neighborhood-types
represented as P = [p1, · · · ,ps]. The associated pre-learned MKL parameters
[β1, · · · , βs] for the selected clusters are used for independent diffusion over the
local graph Gq on xq. This is achieved by first computing the respective Γq
matrix sized (l × lm) and then multiplying it with the pre-learned parameter
vector βc sized (lm × 1). Finally, we take an average of these diffused values.
Label diffusion is performed as:

zdiffused
q =

1

s

s∑
c=1

Γqβc (15)

where zdiffused
q is the (l × 1) vector of the diffused labels. Finally, a fixed set of

r labels is predicted for xq by choosing labels corresponding to top r values in
zdiffused
q .

4 Datasets

Table 1 provides details of datasets used in our experiments.

Table 1. Dataset details: Row 2-4 contain basic dataset information, Row 5-6 denote
the statics in the order- median, mean and max.

Dataset Information PascalVOC-2007 [5] MIRFlickr-25k [12]

Total Number of Images 9963 25000

Vocabulary Size 20 38

Train/Test Split 5011/4092 12500/12500 [25]

Labels/Images 1, 1.51, 6 5, 4.7, 17

Images/Labels 257.5, 379.2, 2050 995.5, 1560, 5216

4.1 PascalVOC-2007

PASCAL Visual Object Classes (VOC) challenge [5] datasets are widely used
as the benchmark for multi-label classification. The VOC 2007 dataset contains
9963 images. We follow a train/test split of 5011/4952 as in [32].

4.2 MIRFlickr-25k

This dataset contains images downloaded from Flickr and was introduced in [12]
for evaluating keyword-based image retrieval. It consists of 25000 images and
we follow an equal split of train and test (12500 images each) as used in [25].
419 images in the dataset do not have any of the 38 semantic label annotations.
Metadata, GPS and EXIF information are also provided in the dataset but we
do not use any of these in our method.



5 Experiments & Results

5.1 Features and Evaluation Method

Deep-learning based features have proven to be effective in image representa-
tion [22, 28] and hence we use outputs from fc7-layer of VGG16 network (pre-
trained on ImageNet) [23] to represent an image. To analyze the annotation
performance, we consider precision, recall, F1-score, average precision (AP ) and
mean average precision (mAP ). We predict a fixed number of r labels per image
which is set to be the mean number of labels per image in the dataset. Let a
label wi be present in m1 images as ground-truth and is predicted for m2 im-
ages where m3 of them are correct. The precision for wi is m3/m2 and recall
is m3/m1. Mean precision (P ) and recall (R) is the precision and recall values
averaged over all the labels. F1 measure is the harmonic mean of P and R. We
also report AP and mAP by evaluating ranking of all the images.

5.2 Experiments

We set s = 3 for PascalVOC-2007 and s = 5 for MIRFlickr-25K. Additionally
we set k = 6 in kNN graph construction in section 3.2 and m = 100. θ is chosen
as m equally spaced values between 0.001 to 1.0 (corresponding t will vary from
large to small scales of diffusion) and the index of the eigenvalue is chosen as
the closest integer value greater than 0.2× |V |. Performance variation observed
for varying m from 32 to 100 was less than 1%.

We find the values of the hyper-parameters via cross-validation by dividing
the train dataset into two parts (5 : 1 ratio) while maximizing F1 and the best
performing parameters on validation set were used to evaluate performance on
the test data. For η and δ we explore from the following set {5, 12, 20, 28} to find
the best performing values. We also vary the number of cluster centers in LLD
(c) and the number of clusters in image-feature space clustering (g). The best
performing values for MIRFlickr-25k were found to be η = 5, δ = 12, c = 100
and g = 30 and for PascalVOC-2007 were found to be η = 5, δ = 20, c = 45 and
g = 20.

5.3 Results

Table 2 shows the performance comparison of the proposed method with existing
methods that uses VGG16 features. The obvious understanding one can make
here is that there is non-agreement between F1 and mAP measures. The mAP
considers the global ranking of all images corresponding to each label instead of
just considering top r labels for computation of average precision.

We can see that our method performs very close to the state of the art
2PKNN method and also has similar mAP. This small disparity in performance
can be attributed to the fact that our method does not consider KCCA and
metric learning type of fully global operations.



Table 2. Comparison of popular methods on different evaluation metrics for
MIRFlickr-25k Dataset for r = 5

Method P@r R@r F1@r mAP

TagRel [16] 41.5 72.1 52.7 68.9

TagProp [18] 45.5 70.1 55.2 70.8

2PKNN [28] 46.4 70.9 56.1 66.5

SVM [26] 38.8 72.4 50.5 72.7

HHD [22] - - - 75.0

Our Method 51.0 59.9 55.1 66.3

Table 3. Label specific (Average Precision in %) for all labels, mAP, P@r, R@r and
F1@r with r = 2 on PascalVOC-2007 dataset.

CNN-RNN [32] Our Method

plane 96.7 92.8

bike 83.1 84.7

bird 94.2 91.3

boat 92.8 81.7

bottle 61.2 41.3

bus 82.1 83.9

car 89.1 89.0

cat 94.2 86.3

chair 64.2 55.7

table 70.0 68.4

CNN-RNN [32] Our Method

cow 83.6 71.9

dog 92.4 86.7

horse 91.7 89.4

motor 84.2 82.7

person 93.7 91.8

plant 59.8 54.0

sheep 93.2 75.1

sofa 75.3 57.1

train 99.7 92.6

tv 78.6 66.9

CNN-RNN [32] Our Method

P@r - 53.8

R@r - 77.7

F1@r - 63.6

mAP 84.0 77.2

Fig. 3. Distribution of label frequency in MIRFlickr-25k and PascalVOC-2007 test
images.
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Figure 3 shows the distribution of both ground-truth and predicted label
frequency in test images on two datasets. For MIRFlickr-25k, a large section of
predicted label frequency curve (including low and high frequency labels) closely
overlaps with that of ground truth. However, the medium frequency labels (in the
middle) are over-predicted at the cost of suppression of few frequent occurring
labels (right tail). This is prevalent due to the nature of our approach, but we
accept this as a trade-off in order to address the issue of class imbalance by
accurately predicting lower frequency labels in images. In case of PascalVOC-
2007, we observe our curve running parallel to the one of ground truth but with a
shift of a few units. This shift is due to the difference that on an average only 1.5
labels are associated with image in the ground truth annotation but we predict
2 labels per image.

Figure 4 shows the qualitative results on a few examples from the MIRFlickr-
25k dataset. Row1 depicts images which consists of frequent labels in the ground-
truth(male, people) while Row2 consists of images with no ground-truth and
Row3 contains images with rare labels (baby, portrait) in the ground-truth. From
Row1 and Row3 we observe that our method performs well on the frequent and
rare labels. We also observe that for images with no ground-truth (Row2) the
predictions are semantically relevant to the image-content. Labels in red-color
denote tags which are not present in the ground-truth of the image but are
semantically meaningful. This indicates towards the incomplete-labeling in the
dataset.

6 Conclusion

We have proposed a novel solution for automatic multi-label image annotation.
Our method exploits the empirical observation that similar images have simi-
lar neighborhood-types in terms of their label distribution. We have introduced
the notion of neighborhood-type and proposed to learn local MKL models per
cluster/neighborhood-type with closed form learning solution. The MKL formu-
lation exploits the multi-scale diffusion where we also proposed a novel diffusion
scale normalization to be able to combine diffusion at different local graphs. The
overall formulation is scalable as we have mainly proposed local models while
clustering is employed twice (in original VGG16 feature space and as well as
in histogram/LLD space). Finally, we have shown promising results on publicly
available dataset.

As part of future work it will be interesting to explore the hypergraphs in the
local space to model the higher order correlations between labels explicitly in
conjunction with image correlations. Local metric learning construct in forming
and/or manipulating LLD clusters can be used which may provide insights into
the inherent nature of the problem.
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Fig. 4. Qualitative results for label prediction on MIRFlickr-25k dataset. Row1: images
with frequent labels(male, people); Row2: images with no ground truth label given;
Row3: images with rare labels(baby, potrait). Green: Labels present in ground-truth
and our model’s predictions (true positives) , Blue: Incorrect predictions by the model
and Red: Labels are not present in ground truth but are semantically meaningful. Red
and blue labels combined form False Positives
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